plot.TrendGradient {greenbrown}R Documentation

Plotting function for objects of class TrendGradient

Description

This function plots a gradient of trend slopes (e.g. latitudinal gradient).

Usage

## S3 method for class 'TrendGradient'
plot(x, type = "xy", ylab = NULL, xlab = NULL, 
    col = "black", ylim = NULL, xlim = NULL, add = FALSE, symbolic = TRUE, 
    symbols = "standard", ...)

Arguments

x

Object of class 'TrendGradient' as returned from function TrendGradient

type

plotting type: 'xy' = gradient at x axis and slope at y axis, 'yx' = gradient at y axis and slope at x axis.

ylab

A title for the y axis

xlab

A title for the x axis

col

line colors

ylim

limits for y axis

xlim

limits for x axis

add

add to exisiting plot?

symbolic

Add p-value as symbols (TRUE) or not (FALSE). If TRUE the p-value of a trend slope is added as symbol to the plot.

symbols

Type of symbols for p-values. "standard": *** (p <= 0.001), ** (p <= 0.01), * (p <= 0.05), . (p <= 0.1) and no symbol if p > 0.1.; "simple": * (p <= 0.05), x (p < 0.1)

...

Further arguments that can be passed plot.default

Author(s)

Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]

See Also

plot.default, plot.ts

Examples

# load a raster dataset of Normalized Difference Vegetation Index
data(ndvimap)
plot(ndvimap, 8)

# compute a latitudinal gradient of trends (by default the method 'AAT' is used)
gradient <- TrendGradient(ndvimap, start=c(1982, 1), freq=12)
gradient
plot(gradient) 
# shown is the trend at each latitudinal band, the area represents the 95% 
# confidence interval of the trend (computed with function TrendUncertainty), 
# symbols indicate the p-value of the trend at each latitude

plot(gradient, type="yx") # the gradient can be also plotted in reversed order

# compute gradients with different trend methods
gradient.mac <- TrendGradient(ndvimap, start=c(1982, 1), freq=12, 
   method="SeasonalAdjusted", funSeasonalCycle=MeanSeasonalCycle)
plot(gradient.mac, col="blue", ylab="NDVI trend (month-1)")

# method AAT uses annual time steps, convert years -> months
gradient$Slope <- gradient$Slope / 12 
gradient$SlopeUncLower <- gradient$SlopeUncLower / 12
gradient$SlopeUncUpper <- gradient$SlopeUncUpper / 12
gradient$SlopeUncMedian <- gradient$SlopeUncMedian / 12
plot(gradient, col="red", add=TRUE)



[Package greenbrown version 2.4.3 Index]